
Small Satellites Hardened by Design for the use of Non-Space Qualified EEE Parts

Contents

- Motivation
- Risk reduction strategy
- Up-screening
- Radiation hardening strategy
- Early wear out hardening strategy
- Levels of Redundancy
- Conclusions

Motivation

 Class C or D missions: medium or high risk

 Quality of parts is an important factor in the success of missions

Most non-qualified parts are PEMs

Risk reduction strategy

- o Upscreening?
 - Screening
 - Qualification tests
- o Hardening by Design?
 - Protection from radiation and early wear out Failure mitigation
- o Both?

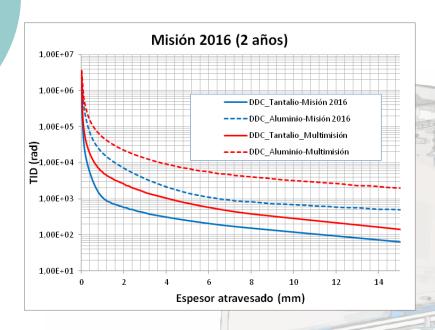
Up-screening - Is it enough?

Table 1 MONOLITHIC INTEGRATED CIRCUIT REQUIREMENTS (Page 1 of 2) 1/

Part Designation	Use As Is	Screen To Requirements in Table 2 2/	Qualify To Requirements in Table 3 2/
Level 1: 1) Class V or Class S 2) Class Q or Class B 3) SCD 4) 883-Compliant or Class M 5/	X	X 3/, 4/, 5/ X 4/, 5/ X 4/, 5/, 6/	X X
Level 2: 1) Class V or Class S 2) Class Q or Class B 3) 883-Compliant or Class M 6/ 4) SCD 5) Mfr. Hi-Rel 7/ 6) Commercial	x	X 4/ X 4/, 8/ X 4/, 8/ X 4/, 8/ X 4/, 8/	X 9/ X 9/ X 9/ X 9/ X 9/

- The more demanding environmental requirements
- The lower the size of the accepted batch; if any

Parts needs to be protected by design



Risk Reduction Strategy

- Reduction of the Problem Dimensions
 - Information Search
 - Heritage /Open Databases
 - Testing
 - Radiation tolerance/Reliability
 - Criticality Analysis (FMEA)
- Protection
 - Radiation hardening strategy
 - Optimized Thermal design
 - Derating
- Mitigation
 - Redundancy/FDIR

TID and DD mitigation

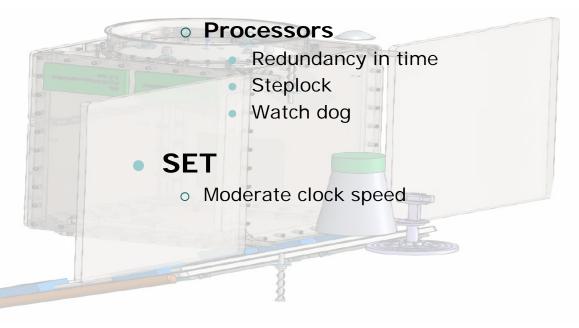
Radiation shielding

- Electrons and low energy protons
- Satellite/Boxes level
 - Ray trace analysis
- Spot shielding
 - Secondary radiation

Derating

- Design for degraded parameters ie: supply current
- Operating Temperature
 - Dark current increase in CCDs

SEE Mitigation: Destructive


- o SEL
 - Current limiting with reset
- o SEB
 - Power MOSFETs
 - Drain current limiting (protection)
 - Derating of Drain-Source Voltage (prevention)
- SEGR
 - **Power MOSFETs**
 - Using in a safe operating range
 - Memory cells
 - High purity oxides diminishes risk

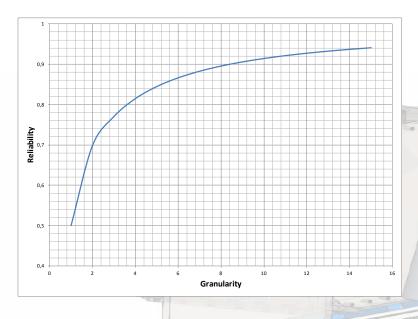
SEE Mitigation: Non-Destructive

Service Loss

SEU

SEE Mitigation

- Data Quality Loss
 - SEU
 - Memories
 - Parity and CRC (error detection)
 - Hamming (single and double bit errors)
 - Reed Solomon (multiple-consecutive bits)
 - TMR
 - Scrubbing

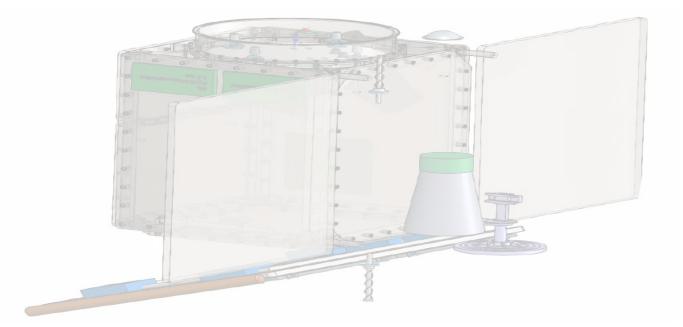


Optimized Thermal Design

- Wear out activated by high semiconductor junction temperature:
 - Electromigration (Blacks equation)
 - Corrosion
- Mechanical fatigue depending on the range of thermal cycles (Coffin-Mason)
 - BGA and CCGA cases
- Mitigation: System level Thermal design

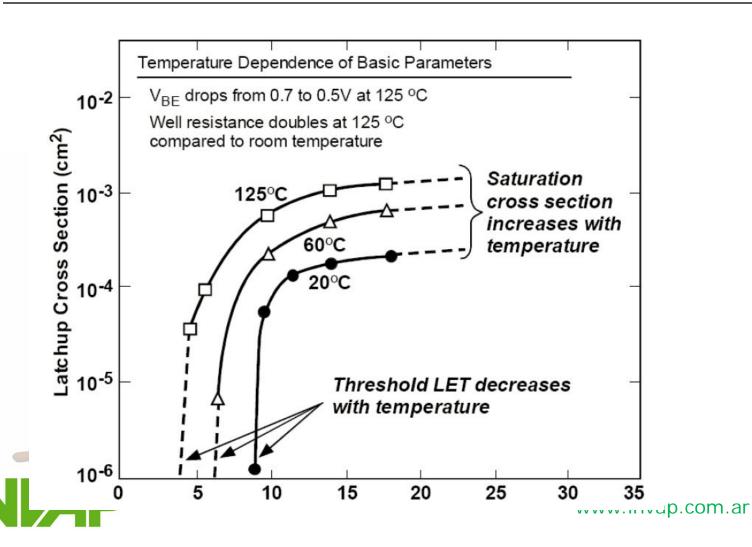
Redundancy Mitigation

- Although the reliability figure decreases because of interconnections when the granularity level at which the redundancy is applied is too fine.
- There is always an optimun value of reliability for granularity levels greater than one.
- Redundancy at constellation and satellite level is not always the best strategy.

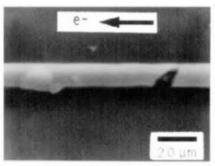


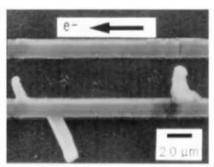
Conclusions

- The use of non space-qualified electronic parts in space missions is becoming more and more frequent
- They can be "use as is" only when high risk is tolerated
- Up-screening of these parts is necessary for extending mission lifetime expectations
- Special design practices are needed to guarantee the success of the up-screening processes



Complementary slides





Latchup

Electromigration

Voids (Open Circuits)

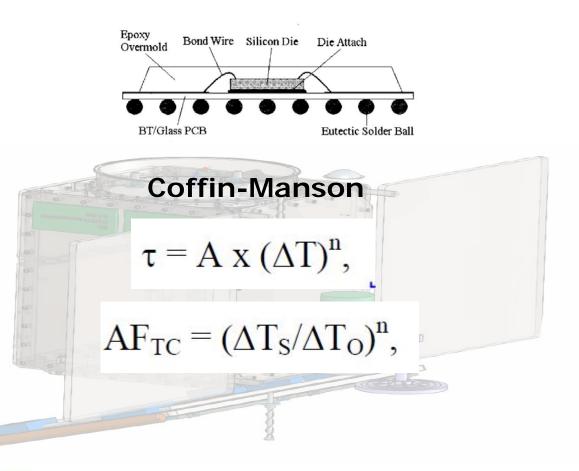
Hillocks (Short Circuits)

Blacks Equation Mathematical Model for Mean Time to Failure (MTTF)

$$MTTF = \frac{A}{J^{N}} \cdot \exp\left(\frac{E_{a}}{kT}\right)$$

- A Cross-section-area-dependant constant
- J Current Density
- N Scaling factor, usually set to 2
- E_a Activation energy for electromigration
- k Boltzmann constant
- T Temperature

Corrosion


 Electronic devices with aluminum or aluminum alloy with small percentages of copper and silicon metallization are subject to corrosion failures and therefore can be described with the following model:

$$L(RH, V, T) = B_0 \exp[(-a)RH]f(V) \exp(E_a / kT)$$

- o where:
- B0 is an arbitrary scale factor.
- a is equal to 0.1 to 0.15 per % RH.
- f(V) is an unknown function of applied voltage, with empirical value of 0.12 to 0.15.

Mechanical Fatigue

